
G0 Backward Angle: Jeopardy Review

Main points

• G0 goal is to measure GE
s, GM

s and GA
e over range of 

momentum transfers with best possible precision

• Requires backward angle H2 and D2 measurements

• Modify original plan to run with 499 MHz beam structure

• Improve precision significantly with higher beam current

D. Beck, UIUC
PAC26, July 2004



Quark Currents in the Nucleon
• Measure npZp GGG ,,, ,, γγ
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• interference term violates parity: use

where

Parity-Violating Electron Scattering
pZG ,
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• contributes to electron scattering

- interference term: large        x small
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G0 Backward: Program
• Match forward angle range with measurements at 3 momentum 

transfers

• Measure both H and D targets to separate back angle 
contributions from GM

s and GA
e

- 30 d running time equalizes statistical, other uncertainties
- for all energies, uncertainties ~ minimized for equal running times
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PV eN Results To Date 
• Sensitivities are different; trend??

(NEW RESULT    )



G0 in Hall C: Forward Angle

magnet
detectors

luminosity monitors

target service

beamline monitors



G0 Backward: Experiment
• Detect electrons at 110o; apparatus 

turned around
• Separate elastic, inelastic electrons 

using existing focal plane detectors 
(FPDs), cryostat exit detectors 
(CEDs, not shown)
- provides measurement of 

momentum and angle

• Pion background in D2 measurement subtracted using aerogel
Cherenkov detector (not shown)

• Target performance will allow us to run at 80 µA (500 W)
- limited by total power capacity

• Run with 499 MHz (rather than 31 MHz) beam structure
- eliminates leakage asymmetry problem (forward angle)
- allows for more straightforward accelerator operation
- allows for higher beam current (> 40 µA)

• Change from beam trigger to detector trigger



G0 Backward: Added Detectors
• Cryostat exit detectors (CEDs) 

provide second measurement to 
determine electron momentum and 
angle
- mounting in machined Rohacell box
- scintillator/light guide fabrication 

complete
- first octant being assembled

• Aerogel Cherenkov detector provides 
particle i.d. for pion rejection
- prototypes tested in mixed beam at 

TRIUMF
- rejection of ~ 100

- first NA and Fr modules in house; 
others by end of summer

CEDs mounted in Rohacell box

Aerogel Cherenkov detector mounted in 
final detector frame



G0 Backward: Electronics Schematic

FPD disc/meantimer

CED disc/meantimer

1 hit?

1 hit?

Cherenkov disc

CED/FPD coinc
(electrons) scalers

CED/FPD coinc
(pions) scalers

• Trigger on pairs of hits
- beam pickoff signal (forward angle) replaced by this trigger

• Record both electron and pion yields (asymmetries)

New NIM module
from LPSC



G0 Backward: Background Summary
• Backgrounds from inelastic electrons, pions

- pions measured using Cherenkov, subtracted
- inelastic electron background subtracted

• Results for deuterium – worst case
- assume ∆finel/finel = 20%

282.1*-34-7210%0.274799

211.8-21-433%1.10576

191.8-13-253%2.80424

Increase
(%)

∆Aqe
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Ainel

(ppm)
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(MeV)
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* Note: includes small contribution from pion background



G0 Backward: GE
s and GM

s

• includes all uncertainties (Ie=80 µA, Pe=75%)

Leinweber, et al hep-lat/0406002



G0 Backward: GA
e

• includes all uncertainties (Ie=80 µA, Pe=75%)



G0 Backward: Beam Time Request
• Request re-approval of 60 d beam time for first backward 

measurement
- 30 d for each target
- 80 µA reduces uncertainties in GM

s and GA
e by ~ 30%

• Q2 for first measurement to be determined by physics outcome 
of forward measurement
- in consultation with lab

• Request approval of 10 d of commissioning time for 
checkout of new setup
- CEDs, Cherenkov detectors, electronics, target, background

- roughly 6 shifts each distributed in 10 d period 
- based on successful forward angle commissioning plan (45 d)

• Plan to return to the PAC in January to request time for 
remaining measurements to allow maximum scheduling 
flexibility
- possibility of 2 running periods rather than 3
- saves 1 installation/removal cycle (~3 mo)



Extra Slides



G0 Backward: GA
e

• Theory: Maekawa & van Kolck (chiral perturbation theory) PL B488
(2000) 167



G0 Backward: GA
e

• Theory: Riska (chiral quark model) NP A678 (2000) 79.



G0 Backward: Uncertainty Contributions GE
s



G0 Backward: Uncertainty Contributions GM
s



G0 Backward: Uncertainty Contributions GA
E



G0 Backward: Detector Thresholds
• Detector thresholds must be reduced relative to 

forward angle experiment

• Focal plane detector (FPD) thresholds must be 
reduced from those values used for proton detection
- actual threshold will remain at 50 mV; tube gain will be 

increased
- effective threshold at ~ 1/2 x minimum ionizing signal

- m.i.p. ~ 200 (100) p.e.
- downstream beamline shielding was necessary to 

shield FPDs from low energy γs
- subthreshold, but large anode current contribution

- NOTE: FPDs 14-16 largest volume detectors

• Cryostat exit detectors designed for electron 
detection
- m.i.p. ~ 100 p.e.
- thresholds also at 50 mV
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G0 Backward: Cherenkov Efficiency
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• Efficiency measured with 
prototype detector with mixed test 
beam at TRIUMF
- ~ 6 p.e. peak

• Gradient actually very low

Cherenkov at %/mm04.0~
dx
dε

• c.f.

%/mm1~
beamdx

dY

due to solid angle effect
- these slopes contribute to false asymmetry of ~ 10-9 in forward 

measurement



G0 Backward: Cherenkov Rejection
• Pion efficiency measured with 

prototype detector with mixed 
test beam at TRIUMF
- rejection factor of ~100

Threshold (p.e.)
P
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ef
fic

ie
nc

y

• Measure rejection factor on-line 
using region of spectrum where 
pions dominate
- function of position (CED no.)



G0 Backward: Beam Background
• Two types: beam halo, hall background

• Beam halo
- measurements during forward angle experiment
- rates in small scintillators near beam pipe ~ 20 kHz

• To do: Hall background calculations (radiation protection group)
• Experience in forward measurement

- useful in determining source of low energy background
- recall: detectors close to downstream shower from 2.3% radiation 

length target
- sub-threshold

- did not affect recorded spectra
- did generate large anode current – worry about tube lifetime

- note that singles rates in the detectors varied from 90 kHz (FPD 1) 
to 270 kHz (FPD 13)



G0 Backward: Beam Specifications (1)
• Set stringent requirements for forward angle run – MET!

- Helicity-correlated specs particularly important
• Same requirements for backward run are appropriate

- easier with 499 MHz beam structure

75 eV29 ± 4 eVenergy differences

2 nrad1.5 ± 1 nrady angle differences

2 nrad1 ± 1 nradx angle differences

20 nm4 ± 4 nmy position differences

20 nm3 ± 4 nmx position differences

1 ppm-0.14 ± 0.32 ppmcharge asymmetry

“Specs”AchievedBeam Parameter



G0 Backward: H2 Separation
• Best case example

- Simulation: background in ‘elastic bins’ (CED/FPD pair) few %

H2 424 MeV
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G0 Backward: D2 Separation
• Worst case example

- Simulation: background in ‘elastic bins’ (CED/FPD pair) ~10 %

D2 799 MeV
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G0 Backward: Elastic Selection
• Worst case example: 799 MeV D2 – inelastic/elastic
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• Measure timing difference between pions and protons using 
Fastbus monitoring electronics

G0 Forward: Spectrometer Calibration

• Together with incident 
energy measurement, 
determined field integral 
and calibrated momentum 
transfer
- relative timing to 100 ps
- field integral 

determination to ~1%



G0 Forward: Leakage Asymmetry (1)
• Laser light in polarized source does not ‘turn-off’ completely between 

pulses

• Normal operation
- some (~10-3) electrons produced by Hall A and B lasers ‘leakage’ comes 

into Hall C slit (chopper)

• G0 time structure
- some (~10-3) electrons produced 

by Hall A and B laser ‘leakage’ 
comes into Hall C main beam 
pulse (every 32 ns)

- some (~10-3) electrons produced 
by Hall A, B and C laser ‘leakage’ 
comes in time between main Hall 
C beam pulses (every 2 ns)

Schematic leakage current in G0 tof spectrum



G0 Forward: Leakage Asymmetry (2)
• Key problem: leakage beams have different (large!) asymmetry 

than main Hall C beam
- current monitors see all beams
- feedback system to eliminate helicity-correlated beam current 

asymmetry induces current asymmetry in main Hall C beam
- false asymmetry ~ 1 ppm for elastics

• Can see leakage asymmetry 
more or less directly in the 
time ‘between’ main pulses
- after the slowest particles 

from the previous pulse 
(deuterons)

- before the fastest particles 
from the current pulse (direct 
γs)

- in general very sensitive in 
regions where counting rate 
is low



G0 Forward: Background Subtraction

• Background under elastic proton peak – 2 main sources
- inelastic protons from hydrogen
- inelastic protons from aluminum and helium in target cell

• Strategy
- determine correction to elastic asymmetry purely from data

- yield and asymmetry in time bins around elastic peak
- understand background yield and asymmetry from 

simulation/calculation
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• Dilution factors: 9.5 – 15 ± 1%
- using simple fits or simulation

• Aluminum/helium yield and 
asymmetry well understood from 
special runs
- “flyswatter” target (1 mm aluminum, 

downstream end)
- limited data ← mechanical failure

- aluminum frame (3 mm, upstream 
end)

- “empty” target running (H2 gas at two 
different densities)

• Investigating inelastic hydrogen 
asymmetries

G0 Forward: Background Subtraction

Dilution factors

Entrance and exit target windows



• Target performance exceeded expectations
• Two important issues for PV experiments

- density fluctuations
- this “noise” must be smaller than counting statistics

- overall power
- must maintain sub-cooling of target

• Target boiling contribution < 200 ppm

G0 Forward: Target Performance


