
Performance of the G0 Superconducting Magnetic Spectrometer

� About 160 of the 3270 hours (4.9%) of available data collection time during commissioning and 
production running were lost because of magnet problems.

� This represents about 48% of  the lost data collection time (the rest was lost due to other problems: 
target, DAQ, etc.).

� Most (70.3%) of the magnet problems were caused by radiation damage to control system 
components in the hall.

� Non-permanent radiation-related changes to “Programmable Logic Controller” software often 
resulted in a fast dump of the magnet, with a minimum of 2.5 hours of recovery time.  Typically the 
sequence of events was as follows:

� PLC program stops executing due to radiation- related memory error.

� Power supply shuts down when PLC “heart-beat” interlock opens.

� The analog quench protection system detects the inductive transient at the start of ramp-down as a “quench”.

� The fast-dump switch is opened.

� Eddy currents in coil cases, caused by the rapid fall of current, heat the coils.

� LHe in coils and reservoir evaporates.

� Parallel plate relief valve opens to relieve helium pressure.

• LHe supply and return problems were the second largest cause (18.7%) of magnet related lost time.

Operation

Magnet Problems When Collecting Data

Electrical Cryogenic
� The cooldown was specified to take 7 days.  Actual cooldown requires about 21 days 

limitted by requirement that ∆T between inlet and coil average be < 75 K.

� Heat load to LHe was specified to be < 40W,  but boil-off studies indicate that the load is 
about 107 W

� The steady-state LHe requirement of the magnet at full power was measured to be about 
8 g/s.  This is consistent with the magnet heat load and some additional load from the 
supply lines.
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� The magnet was specified to have an 
inductance of 0.53 H.

� During a fast dump, the current decays with a 
10.4 s time constant into 0.05 Ω dump resistor

� This implies an inductance of 0.52 H.

Red curve is an exponential fit to the 
current decay after a fast dump.

I = A exp( -t / 10.4)

� Redundant quench protection systems, a “digital”
system which relied on the operation of the PLC and 
an independent “analog” system, were used to trigger 
a fast dump when a quench was detected.

� The digital quench protection system initially suffered 
from the failure of series “safety” resistors on voltage 
taps due to thermal cycling.

� Circuitry was added to detect broken resistors.
� For each coil, a battery provided an isolated current, 

which circulated through the coil and adjacent voltage 
tap safety resistors.

� Diodes were used to ensure that the isolated current 
was only seen by the corresponding input stage to the 
digital quench protection system.

� Offsets voltages produced by the battery current were 
measured and subtracted by the PLC software.

� The absence of the offset voltage was the signature for a 
broken resistor.

� After the first commissioning run (October 2002 to 
January 2003), the safety resistors were re-located 
outside of the cryostat.  No further resistor failure has 
occurred.
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Red curve is an linear fit to the LHe Level.

LHe Level = -0.0433 t + C

Pressure was constant at 16.01 PSIA.  At that pressure the latent heat of 
vaporization is 2474 kJ/l. Thus the heat load is 0.0433 × 2474 = 107 W

A typical measured time-of-flight spectrum.  Binning 
is 0.25 ns*. 

A Comparison between simulated (curve) and measured 
(points) differences in the time-of-flight of elastic protons  
and π+ particles*.

* From “G0 Experiment Status”, A Contribution to the Proceedings of the Fourth International Conference on Perspectives in 
Hadronic Physics, Trieste, May 12-16, 2003 - G. Batigne, October 21, 2003

� A measurement of the Q2

associated with a focal plane 
detector can be extracted from 
the difference between the time-
of-flight of elastic protons and of 
π+ particles. Particle time-of-flight 
is sensitive to the magnetic field 
configuration.

� A comparison was carried out*
between the simulated and 
measured time-of-flight 
differences.  The simulation was 
based on the design magnetic 
field, as well as a detailed 
models of the experiment 
geometry and event generation.

� Simulation and measurement 
agree to a precision of 100 ps, 
which implies an uncertainty on 
Q2 within the 1% requirement of 
the experiment.

Mechanical
Magnetic

� Coil locations were measured after the magnet was installed at Jefferson 
Lab with the magnet at room temperature using Photogrammetry.

� Photogrammetry employs the analysis of high resolution digital 
photographs of targets to obtain a self-consistent set of target locations as 
well as camera locations and orientations.

� 16 targets (8 pairs) were located on each of the 8 coils. 

� Target locations were compared to ideal design locations.  The overall 
position and orientation of the magnet was adjusted to best fit the 
measurements to the ideal.

� The average deviation of measurements from the ideal was found to be 
1.6 mm.  That is below the 2.0 mm specification.

� The location of the magnet when cooled was deduced from known 
coefficients of thermal expansion.

� During about 8 hours at the end of the forward-
angle measurement, the magnet current was 
raised to 5100 A in order to more cleanly 
measure the “super elastic” background.

� Though the stored energy was thereby increased 
by 4%, the magnet tolerated the increased field 
with no apparent difficulty.

The three vector plots below depict 
different views of the 3-d displacement of 
photogrammetry targets from their ideal 
locations.  Vectors are colored according 
to length (see histogram plot).
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